$La₆Ba₃[Si₁₇N₂₉O₂]Cl—An Oxonitridosilicate Chloride with Exceptional$ Structural Motifs

Dajana Durach,[†] Felix Fahrnbauer,[‡] Oliver Oeckler,^{*,‡} and Wolfgang Schnick^{*,†}

† Department of Chemistry, University of Munich (LMU), Bute[nan](#page-4-0)dtstrasse 5-13, 81377 Munich[, G](#page-4-0)ermany

‡ Faculty of Chemistry and Mineralogy, Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Scharnhorststrasse 20, 04275 Leipzig, Germany

S Supporting Information

[AB](#page-4-0)STRACT: [The oxonitrid](#page-4-0)osilicate chloride $La_6Ba_3[Si_{17}N_{29}O_2]Cl$ was synthesized by a high-temperature reaction in a radiofrequency furnace starting from $LaCl₃ BaH₂$, and the ammonolysis product of $Si₂Cl₆$. Diffraction data of a micrometer-sized single crystal were obtained using microfocused synchrotron radiation at beamline ID11 of the ESRF. EDX measurements on the same crystal confirm the chemical composition. The crystal structure [space group $P6_3/m$ (no. 176), $a = 9.8117(14)$, $c = 19.286(6)$ Å, $Z = 2$]

contains an unprecedented interrupted three-dimensional network of vertex-sharing $SiN₄$ and $SiN₃O$ tetrahedra. The $SiN₄$ tetrahedra form dreier rings. Twenty of the latter condense in a way that the Si atoms form icosahedra. Each icosahedron is connected to others via six SiN₄ tetrahedra that are part of *dreier* rings and via six Q³-type SiN₃O tetrahedra. Rietveld refinements confirm that the final product contains only a small amount of impurities. Lattice energy (MAPLE) and bond-valence sum (BVS) calculations show that the structure is electrostatically well balanced. Infrared spectroscopy confirms the absence of N−H bonds.

ENTRODUCTION

Silicon and oxygen are the most abundant elements in the earth's crust, and more than 1000 representatives of silicate structures are known. Among others, silicates find applications in ceramics and glass industries. Nonoxidic ceramics exhibit pronounced covalent bonding character which results generally in high mechanical, thermal, and chemical stability.¹ In this context, (oxo)nitridosilicates turned out to be a promising extension of the classical silicate materials class.² In [a](#page-4-0)ddition, compounds like Li_2SiN_2 , Li_8SiN_4 , and $Li_14Ln_5[Si_{11}N_{19}O_5]O_2F_2$, with Ln = Ce and Nd, emerged as lithium io[n](#page-4-0) conductors, which makes them interesting for potential applications in lithium batteries.^{3−7} Moreover, nitridosilicates such as $M_2Si_5N_8$ with $M = Ca$ and Sr seem suitable as nonlinear optical (NLO) materials.⁸ No[wada](#page-4-0)ys, Eu²⁺-doped (oxo)nitridosilicates are indispensable luminescence materials for phosphor-converted light-emit[ti](#page-4-0)ng diodes (pc-LEDs). $9,10$ The reason for the diverse and tunable properties of these compounds lies in their broad structural variety. The structur[al e](#page-4-0)ntities of oxosilicates are largely limited to $SiO₄$ tetrahedra with either terminal $O^[1]$ or singly bridging $O^{[2]}$ atoms. In contrast, (oxo)nitridosilicates are typically built up from Si $(O,N)_4$ tetrahedra with $N^{[1]}$, $N^{[2]}$, $N^{[3]}$, and $N^{[4]}$ atoms bridging up to four neighboring tetrahedral centers. This variability allows for a wide range of additional structural possibilities. Moreover, except for fibrous $\text{SiO}_2^{\quad 11}$ whose existence has not yet been proven unequivocally, SiO₄ tetrahedra share only common vertices, whereas nitridosilicat[es](#page-4-0) can contain both vertex- and edge-sharing tetrahedra.¹² Due to these structural possibilities and the resulting outstanding properties, the search for novel (oxo)nitridosilicates [h](#page-4-0)as been pursued frequently. Synthetic approaches like high-temperature syntheses, flux methods, and precursor routes enabled suitable

access to this compound class.^{13–15} However, syntheses often lead to inhomogeneous samples containing microcrystalline compounds. This situation im[pedes](#page-4-0) structure determination by means of conventional single-crystal or powder X-ray diffraction. However, diffraction data of micrometer-sized single crystals can be acquired using synchrotron radiation as recently developed Be and Al lenses allow unprecedented brilliance by microfocusing.16−¹⁹ This approach leads to the structure elucidation of the novel compound $La_6Ba_3[Si_{17}N_{29}O_2]Cl$, one of the fe[w](#page-4-0) [ox](#page-4-0)onitridosilicate chlorides among $Nd_{10}Si_{10}O_9N_{17}Cl$ ²⁰ Ln₄Si₄O_{3+x}N_{7-x}Cl_{1-x}O_x (Ln = Ce, Pr, Nd; $x \approx 0.2$, 21 and Ba₃Si₃N₅OCl.²</sup>

EXPERI[ME](#page-4-0)NTAL SECTION

Synthesis. For the synthesis of $La_6Ba_3[Si_{17}N_{29}O_2]Cl$, LaCl₃ (23.2) mg, 0.095 mmol, 99.99%, Alfa Aesar), " $\rm{Si}_2(\rm{NH})_3$ · $\rm{6NH_4Cl}^{''23}$ (100.0 mg, 0.237 mmol), and BaH₂ (66.7 mg, 0.479 mmol, 99.7%, Materion) were thoroughly ground in an agate mortar and filled into [a tu](#page-4-0)ngsten crucible. These steps were performed under argon atmosphere in a glovebox (Unilab, MBraun, Garching; $O_2 < 1$ ppm; $H_2O < 1$ ppm). Then the crucible was placed into a radiofrequency furnace (type AXIO 10/450, max electrical output 10 kW, Hüttinger Elektronik, Freiburg),¹³ heated under N₂ atmosphere to 900 °C within 5 min, subsequently heated to 1600 °C within 4 h, and finally quenched to room tem[pe](#page-4-0)rature by switching off the furnace. The reaction affords an inhomogeneous sample with small, turquoise crystals of $La_6Ba_3[Si_{17}N_{29}O_2]Cl$ which are resistant to hydrolysis. To remove soluble byproducts the sample was washed with water. Addition of CeF3 or EuF3 (0.4 mg, 0.002 mmol, 99.99%, Alfa Aesar/0.4 mg, 0.002 mmol, 99.99% Aldrich) as doping agent to the reaction mixture results

Received: June 18, 2015 Published: August 11, 2015 in no marked change of color and does not lead to luminescence of the crystals of $La_6Ba_3[Si_{17}N_{29}O_2]Cl.$

Elemental Analysis and Spectroscopy. The chemical composition and morphology of the crystals were analyzed with a LEO 1530 field-emission scanning electron microscope (SEM) operated at 20 kV and equipped with an energy-dispersive Si/Li detector 7418 (Oxford Instruments). To provide electrical conductivity on the sample surface it was coated with carbon (electron beam evaporator CED 030, Balzers). Fourier transform infrared (FTIR) spectroscopy was carried out with a PerkinElmer BXII spectrometer mounting ATR (attenuated total reflection) technology.

Crystal Structure Analysis. For single-crystal structure investigations, crystals of $La_6Ba_3[Si_{17}N_{29}O_2]Cl:Ce^{3+}$ were mounted on Kapton foil sample holders (micromount, MiTeGen, Ithaca). X-ray diffraction data were collected at beamline ID11 of the ESRF in Grenoble (Ge(111) double-crystal monochromator, Frelon 2K CCD detector).²⁴ The beam (λ = 0.33510 Å) was focused to ~4.5 μ m in the horizontal direction and ∼2 μm in the vertical direction with a beryllium [le](#page-4-0)ns system.¹⁶ The reflections of the dominant crystal in an aggregate were indexed with SMART,²⁵ integrated with SAINT,²⁶ and semi-empirically abso[rpt](#page-4-0)ion corrected using SADABS.²⁷ In addition, a correction was applied in order to [acc](#page-4-0)ount for the systemati[c e](#page-4-0)rror owing to the diffraction-angle dependence of the b[eam](#page-4-0) path length through the CCD phosphor.²⁸ The structure was solved by direct methods and refined by full matrix least-squares methods with SHELX.²⁹ Powder X-ray diffr[act](#page-4-0)ion data were collected with a STOE STADI P diffractometer (Mo K α_1 radiation, $\lambda = 0.70930$ Å, Ge(111) monoch[ro](#page-4-0)mator, MYTHEN 1K detector) in modified Debye− Scherrer geometry. Rietveld refinement was carried out using the TOPAS-Academic package.³

■ RESULTS AND DI[SC](#page-4-0)USSION

Synthesis and Sample Characterization. $La₆Ba₃[Si₁₇N₂₉O₂]Cl$ was synthesized at high temperature, the driving force presumably being the decomposition of BaH_2 around 675 C^{31} and its reaction to BaCl₂ with chlorine originating from LaCl₃. Among other intermediates, probably La metal is for[med](#page-4-0), which reacts with the remaining Ba, $LaCl₃$, and the precursor " $Si₂(NH)₃·6NH₄Cl"$ to form turquoise crystals of $La_6Ba_3[Si_{17}N_{29}O_2]Cl$ (Figure 1). The incorporated O supposably originates from contamination of commercially acquired starting materials.

Figure 1. SEM image of crystals of $La_6Ba_3[Si_{17}N_{29}O_2]Cl:Ce^{3+}$ (white circle).

Crystal structure investigations were performed on a crystal of a sample doped with Ce^{3+} (see above). Consequently, the same crystal was used for EDX analysis, which yields an average composition of $La/Ba/Si/Cl/Ce = 6.0:3.5:13.3:1.0:0.14$ (normalized according to the La content; four-point measurements at different positions; the atomic content of N and O was excluded as they are underdetermined, due to the limitations of the method). The heavy element ratios are in good agreement with the sum formula obtained from singlecrystal structure refinement, which is consistent with bondvalence sum (BVS) and MAPLE (Madelung part of lattice energy) calculations (see below). The absence of N−H and O− H groups was confirmed by infrared spectroscopy (Figure S2, Supporting Information). Consequently, the combination of the results of EDX measurements and infrared spectroscopy [excludes the presence of](http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.5b01368/suppl_file/ic5b01368_si_001.pdf) elements other than La, Ba, Si, N, O, Cl, and Ce. In order to determine the bulk phase composition of the washed sample, a Rietveld refinement of powder X-ray diffraction data was performed (Figure S1, Table S1). It shows that the sample contains $La_6Ba_3[Si_{17}N_{29}O_2]Cl$ as the main phase and $BaCl₂$ as byproduct. [A few weak re](http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.5b01368/suppl_file/ic5b01368_si_001.pdf)flections cannot be ascribed to any known compound.

Crystal Structure of La₆Ba₃[Si₁₇N₂₉O₂]Cl. Due to the limited scattering power of the micrometer-sized crystals, microfocused synchrotron radiation was used for single-crystal investigations. As it was impossible to isolate and handle such tiny single crystals, the investigated sample consisted of several fragments; however, the reflections of one individual could be selected in a straightforward fashion and yielded a data set with high quality. The crystal structure of $La_6Ba_3[Si_{17}N_{29}O_2]Cl$ was solved and refined in space group $P6_3/m$ (no. 176) with $a =$ 9.8117(14) Å and $c = 19.286(6)$ Å. In the refinement as well as for BVS and MAPLE calculations, Ce^{3+} was neglected because of its insignificant contribution to the scattering density. The distribution of La and Ba as well as of N and O was fixed as indicated by MAPLE and BVS calculations; for detailed explanations see the sections on Bond-Valence Sum Calculations and MAPLE Calculations below. The crystallographic data of $La_6Ba_3[Si_{17}N_{29}O_2]Cl$ are s[ummarized in](#page-3-0) Table 1, and [the atom](#page-3-0)ic [parameters are listed](#page-3-0) in Table 2. All atoms were refined anisotropically (Table S2 in the Supporting Informa- \tan).³²

[Tab](http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.5b01368/suppl_file/ic5b01368_si_001.pdf)l[e 1](#page-4-0). Crystallographic Data and Det[ails](http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.5b01368/suppl_file/ic5b01368_si_001.pdf) [of](http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.5b01368/suppl_file/ic5b01368_si_001.pdf) [the](http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.5b01368/suppl_file/ic5b01368_si_001.pdf) [Structure](http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.5b01368/suppl_file/ic5b01368_si_001.pdf) Refinement of $La_6Ba_3[Si_{17}N_{29}O_2]Cl$ at Room Temperature

formula	$La6Ba3[Si17N29O2]Cl$
cryst syst	hexagonal
space group	$P6_3/m$ (no. 176)
a(A)	9.8117(14)
$c(\AA)$	19.286(6)
cell volume (A^3)	1607.9(7)
7.	$\mathfrak{2}$
density $(g \cdot cm^{-3})$	4.54
μ (mm ⁻¹)	1.611
radiation	synchrotron ($\lambda = 0.33510$ Å, ID11 at ESRF)
F(000)	1968
θ range (deg)	$1.96 \le \theta \le 14.70$
total no. of reflns	21886
no. of independent reflns	1985 $[R(int) = 0.0304]$
no. of refined params	95
extinction param	0.0031
GOF	1.30
R1 (all data/for $F^2 > 2\sigma(F^2)$)	0.0171/0.0169
wR2 (all data/for $F^2 > 2\sigma(F^2)$) 0.0397/0.0396	
$\Delta\rho_{\text{max}}$ $\Delta\rho_{\text{min}}$ (in e/Å ³)	$1.755; -1.051$

In contrast to the oxonitridosilicate chlorides $Nd_{10}Si_{10}O_9N_{17}Cl$ and $Ln_4Si_4O_{3+x}N_{7-x}Cl_{1-x}O_x$ (Ln = Ce, Pr, Nd; $x \approx 0.2$), which represent layer silicates,^{20,21} and $Ba₃Si₃N₅OCl$, which consists of a zeolite-like framework,²² the crystal structure of $La_6Ba_3[Si_{17}N_{29}O_2]Cl$ is chara[cterize](#page-4-0)d by an unprecedented interrupted three-dimensional network. [It](#page-4-0)

a For anisotropic displacement parameters, cf. Table S2 in the Supporting Information.

consists of vertex-sharing Q^4 - and Q^3 -type $\sin A_4/\sin A_3O$ tetrahedra with a ratio of $Q^4/Q^3 = 15/2$ (Figure 2), which

Figure 2. Crystal structure of $La_6Ba_3[Si_{17}N_{29}O_2]Cl$ in projection along [010] with $Si(N,O)_4$ tetrahedra (turquoise), N (blue), O (red), La (yellow), Ba (orange), and semi-occupied Cl positions (green); the unit cell is displayed.

results in a degree of condensation $\kappa = n(Si):n(N,O) = 0.55$. The Q^3 -type tetrahedra exhibit one terminal $O^{[1]}$ and three singly bridging $N^{[2]}$ atoms, whereas the Q⁴-type tetrahedra consist of four $N^{[2]}$ or two $N^{[2]}$ and two $N^{[3]}$ (interconnection of three tetrahedra) atoms.

The Q^4 -type Si N_4 tetrahedra form *dreier* rings,^{33,34} 20 of which condense in a way that the Si atoms form icosahedra (note that in skeletal representations not all ed[ge](#page-4-0)[s](#page-5-0) of this polyhedron correspond to Si−N−Si bonds due to the presence of $N^{[3]}$ atoms, Figure 3e). Each icosahedron is connected to others via six SiN₄ tetrahedra that are part of *dreier* rings and via six Q^3 -type SiN₃O tetrahedra (Figure 3a, 3b, 3d, and 3e).

In addition, the structure is characterized by sechser and siebener rings, which are built up by the tetrahedra of the Si atoms of the icosahedra and the Q^3 -type tetrahedra. Six edges

Figure 3. (a and b) Topological representations of $La_6Ba_3[Si_{17}N_{29}O_2]$ -Cl; (c) simplification of the topology of $La_6Ba_3[Si_{17}N_{29}O_2]Cl$ as a variant of the NiAs structure type (centers of icosahedra orange; centers of dreier rings violet); (d) icosahedra (orange) connected via six *dreier* rings (violet) and six Q^3 -type tetrahedra (blue) as characteristic buildings blocks of the silicate network; (e) interconnection of the Si atoms of one icosahedron (Si gray; $N^{[3]}$ dark blue; $N^{[2]}$ blue/light blue); due to the presence of $N^{[3]}$ atoms only each Si-N^[2]-Si bond corresponds to an edge of the icosahedron; (f and g) topological representation of the sechser and siebener rings (green); each connecting line of the dreier, sechser, and siebener rings represents a Si−N−Si bond.

of the icosahedron are part of the sechser rings, and 18 edges are part of the siebener rings (Figure 3f and 3g). The novel topology of the framework is characterized by the point symbol ${3.6.7}^4$ ₃ ${3^5.4^5.6^2.7^3}$ ₁₂ ${6^3}$ ₂ as calculated with the program TOPOS.³⁵ Despite the complexity of the network it is a hierarchical derivative 36,37 of the simple NiAs structure type, 38 with the [ce](#page-5-0)nters of the icosahedra on the Ni and the centers of the dreier rings on th[e As](#page-5-0) positions (Figure 3c).

 $La_6Ba_3[Si_{17}N_{29}O_2]Cl$ contains a half-occupied Cl split position (Table 2). This site is coordinated by three Ba

atoms forming a decentered trigonal coordination sphere (Figure 4a). A similar coordination of Cl atoms was observed in

Figure 4. Coordination sphere of the Cl split position (a) and the heavy-atom sites (b and c) of $La_6Ba_3[Si_{17}N_{29}O_2]Cl$ (anisotropic displacement ellipsoids with 60% probability).

other oxo- and oxonitridosilicates, e.g., $Nd_{10}[Si_{10}O_9N_{17}]Cl^{20}$ and $\text{Tb}_3\text{Cl}_5[\text{SiO}_4]^{39}$ Additionally, the refined crystal structure exhibits two crystallographically independent heavy-atom sit[es.](#page-4-0) BVS as well as M[AP](#page-5-0)LE calculations (Table 3 and 4) indicate

Table 3. Bond-Valence Sums for $La_6Ba_3[Si_{17}N_{29}O_2]Cl$ and Expected Oxidation States

	BVS	oxidation state
La1	3.05	$+3$
Ba2	2.14	$+2$
Si1	3.82	$+4$
Si ₂	4.02	$+4$
Si3	3.78	$+4$
Si ₄	3.89	$+4$
Cl	0.46	-1 ⁱ
$N1^{[3]}$	2.66	-3
$N2^{[3]}$	3.08	-3
$N3^{[2]}$	2.97	-3
$N4^{[2]}$	3.07	-3
$N5^{[2]}$	3.02	-3
$N6^{[2]}$	2.54	-3
$O7^{[1]}$	2.20	-2
$[i]$ sof =1/2		

one La and one Ba site (Table 2). La is 7-fold coordinated by six N and one O atom, which results in a distorted singlecapped octahedron (Fig[ure 4b\)](#page-2-0). The Ba site is irregularly coordinated by nine N atoms and the Cl split position (50%/ 50%) (Figure 4c).

The distances Si−N [1.6914(18)−1.8145(9) Å] and Si−O $[1.734(3)$ Å] are in good agreement with other (nitrido)silicates as well as the La−N [2.5361(19)−2.8796(18) Å] and Ba−N [2.8725(19)−3.374(3) Å] distances.^{40−43} The La−O [2.4168(6) Å] and Ba–Cl [3.1535(8) Å] distances correspond to those in other lanthanum or barium [com](#page-5-0)pounds.^{44,45} Additionally, all mentioned distances are in good agreement with the sum of the ionic radii.⁴⁶

Bond-Valence Sum Calculations. As mentioned before, BVS calculations⁴⁷ were perf[orm](#page-5-0)ed in order to reasonably assign sites to N or O and La or Ba, respectively, despite their very similar X-ray [sc](#page-5-0)attering factors. Charge neutrality alone can be preserved by arbitrary exchange of LaN and BaO units and thus is not a sufficient constraint in structure refinements.

Table 4. Partial MAPLE Values and MAPLE Sums [kJ/mol] for $La_6Ba_3[Si_{17}N_{29}O_2]$ Cl as Well As Typical Partial MAPLE Values

$La6Ba3 Si17N29$ $O2$]Cl		typical partial MAPLE values ^{2,52-56}	
La1	4032	$Ln3+: 3500 - 5100$	
Ba ₂	1708	Ba^{2+} : 1500-2000	
Si1	10264	Si^{4+} : 9000 - 10200	
Si ₂	9978		
Si ₃	9677		
Si ₄	9776		
Cl.	289	$CI^-: 307 - 357$	
$N1^{[3]}$	5835	$N^{[3]3-}$: 5000-6200	
$N2^{[3]}$	6084		
$N3^{[2]}$	5427	$N^{[2]3-}$: 4600-6000	
$N4^{[2]}$	5396		
$N5^{[2]}$	5281		
$N6^{[2]}$	5100		
$O7^{[1]}$	2494	$O^{[1]2-}$: 2000-2800	
$\Sigma = 362093$			
$2/3La_2O_3 + 14/3LaN + 1/2BaCl_2 + 5/6Ba_3N_2 + 17/3\beta-Si_3N_4 \rightarrow$ $La6Ba3[Si17N29O2]Cl$			
$9461 + 38470 + 1103 + 10129 + 301963 \rightarrow 361127$; $\Delta = 0.27\%$			

Pauling's rules⁴⁸ and the fact that $X^{[3]}$ (X = N,O) is usually not occupied by O served as a basis. Consequently, the bridging anion positio[ns](#page-5-0) were assumed to be occupied by N and the terminal anion positions by O. This assumption is corroborated by neutron powder diffraction of other oxonitridosilicates, where a similar contribution of N and O was observed.²¹ On the basis of this O/N distribution, the BVS of the cations and anions were determined (Table 3) and indicate one La a[nd](#page-4-0) one Ba site. This leads to a charge-neutral formula, which is additionally corroborated by EDX measurements.

MAPLE Calculations. In order to further confirm the electrostatic consistency of the crystal structure, lattice energies were calculated using the MAPLE concept (Table 4).^{46,49-51} This solely takes into account electrostatic interactions, which depend on the coordination spheres, the charge, a[nd](#page-5-0) t[he](#page-5-0) distances of the constituting ions. As the MAPLE software cannot consider partially occupied positions, an idealized structure model of $La_6Ba_3[Si_{17}N_{29}O_2]Cl$ was set up by shifting Cl from Wyckoff position 4f (point symmetry: 3..; $x = 1/3$, $y =$ $2/3$, $z = 0.2718$) to a fully occupied "average" Wyckoff position 2c (point symmetry: $\bar{6}$..; $x = 1/3$, $y = 2/3$, $z = 1/4$). The calculated partial MAPLE values of La, Ba, Si, N, and O are consistent with the characteristic ranges.^{2,52–55} The partial MAPLE value of Cl is slightly smaller than reference values.^{56,57} Therefore, as the exchange of the La an[d](#page-4-0) [Ba p](#page-5-0)osition with consideration of charge neutrality leads to MAPLE v[alues](#page-5-0) outside of the characteristic ranges, the occupation of the atoms sites is corroborated. The minor deviation of 0.27% of the overall MAPLE value of $La_6Ba_3[Si_{17}N_{29}O_2]Cl$ and the sum of those of the binary compounds that formally constitute $La_6Ba_3[Si_{17}N_{29}O_2]Cl$ confirms the electrostatic balance of the refined crystal structure.

■ CONCLUSION

A high-temperature reaction yielded a novel oxonitridosilicate chloride $La_6Ba_3[Si_{17}N_{29}O_2]Cl$, characterized by an unprecedented tetrahedra network. The structure elucidation shows how microfocused synchrotron radiation is well suited to precisely determine the structure of microcrystals even with

complex structures which could not be characterized by conventional single-crystal or powder X-ray diffraction. This approach is a powerful tool as knowledge of the structure could foster the development of syntheses to phase-pure samples and by comprehension of the relation between structures and properties which is necessary for a systematic improvement of properties. The usefulness of BVS and MAPLE calculations was demonstrated by applying these methods for a reasonable assignment of N and O as well as of Ba and La. Using $BAH₂$ as a starting material appears essential as it decomposes and presumably reacts with $LaCl₃$ to $BaCl₂$ and finely dispersed and reactive La. Furthermore, the use of the precursor " $\rm Si_2(NH)_3$ ·6NH₄Cl" seems to play an important role to obtain novel (oxo)nitridosilicates as this starting material provides another stoichiometric proportion of Si and N and another oxidation state of Si as the common precursors $Si₃N₄$ and Si(NH)_2 .⁵⁸ Consequently, this combination of starting materials appears to be a promising route which might lead to the [disc](#page-5-0)overy of further new (oxo)nitridosilicates with intriguing structural features and properties.

■ ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.5b01368.

Rietveld refi[nement, cry](http://pubs.acs.org)stallographic [data of the Rieveld](http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.5b01368) refi[neme](http://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.5b01368)nt, table of anisotropic displacement parameters, and IR spectrum

(PDF)

Crystallographic information file (CIF) Ch[eckcif](http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.5b01368/suppl_file/ic5b01368_si_001.pdf) Report for $La_6Ba_3[Si_{17}N_{29}O_2]Cl$ (PDF)

■ AUTHOR INFORMATION

Corresponding Authors

*E-mail: oliver.oeckler@gmx.de. Phone: (+49)341 97-36251. Fax: +49 (0)341 97-36299.

*E-mail: [wolfgang.schnick@uni-](mailto:oliver.oeckler@gmx.de)muenchen.de. Phone: (+49) 89-2180-77436. Fax: (+49)89-2180-77440.

Author C[ontributions](mailto:wolfgang.schnick@uni-muenchen.de)

The manuscript was written with contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors thank Gavin Vaughan and Jonathan Wright (ESRF, Grenoble) for discussing experimental details of the synchrotron measurements and maintaining the beamline as well as Peter Schultz, Frank Heinke, and Philipp Urban for their help during the synchrotron measurements and Prof. N. Auner for the provided $Si₂Cl₆$. Financial support by the Fonds der Chemischen Industrie (FCI) is gratefully acknowledged.

■ REFERENCES

(1) Cheetham, A. K.; Férey, G.; Loiseau, T. Angew. Chem., Int. Ed. 1999, 38, 3268−3292.

(2) Zeuner, M.; Pagano, S.; Schnick, W. Angew. Chem., Int. Ed. 2011, 50, 7754−7775.

(3) Lang, J.; Charlot, J.-P. Rev. Chim. Miner. 1970, 7, 121−131.

(4) Hillebrecht, H.; Churda, J.; Schrö der, L.; v. Schnering, H. G. Z. Kristallogr. Suppl. 1993, 6, 80.

(5) MacFarlane, D. R.; Huang, J.; Forsyth, M. Nature 1999, 402, 792−794.

(6) Bhamra, M. S.; Fray, D. J. J. Mater. Sci. 1995, 30, 5381−5388.

(7) Lupart, S.; Gregori, G.; Maier, J.; Schnick, W. J. Am. Chem. Soc. 2012, 134, 10132−10137.

(8) Lutz, H.; Joosten, S.; Hoffmann, J.; Lehmeier, P.; Seilmeier, A.; Höppe, H. A.; Schnick, W. J. Phys. Chem. Solids 2004, 65, 1285–1290. (9) Müller-Mach, R.; Müller, G.; Krames, M. R.; Hö ppe, H. A.; Stadler, F.; Schnick, W.; Jüstel, T.; Schmidt, P. Phys. Status Solidi A 2005, 202, 1727−1732.

(10) Hö ppe, H. A.; Lutz, H.; Morys, P.; Schnick, W.; Seilmeier, A. J. Phys. Chem. Solids 2000, 61, 2001−2006.

(11) Weiss, A.; Weiss, A. Z. Anorg. Allg. Chem. 1954, 276, 95−112.

(12) Schnick, W.; Huppertz, H. Chem. - Eur. J. 1997, 3, 679−683.

(13) Schnick, W.; Huppertz, H.; Lauterbach, R. J. Mater. Chem. 1999, 9, 289−296.

(14) Gal, Z. A.; Mallinson, P. M.; Orchard, H. J.; Clarke, S. J. Inorg. Chem. 2004, 43, 3998−4006.

(15) Zeuner, M.; Hintze, F.; Schnick, W. Chem. Mater. 2009, 21, 336−342.

(16) Vaughan, G. B. M.; Wright, J. P.; Bytchkov, A.; Curfs, C.; Grundlach, C.; Orlova, M.; Erra, L.; Gleyzolle, H.; Buslaps, T.; Götz, A.; Suchet, G.; Petitdemange, S.; Rossat, M.; Margulies, L.; Ludwig, W.; Snigirey, A.; Snigireva, I.; Sorensen, H. O.; Lauridsen, E. M.; Olsen, U. L.; Oddershede, J.; Poulsen, H. F. Challenges in Materials Science Possibilities in 3D and 4D Characterization Techniques. Proceedings of the 31st Risø International Symposium on Materials Science; 2010; pp 457−476.

(17) Fahrnbauer, F.; Rosenthal, T.; Schmutzler, T.; Wagner, G.; Vaughan, G. B. M.; Wright, J. P.; Oeckler, O. Angew. Chem., Int. Ed. 2015, 54, 10020−10023.

(18) Hirosaki, N.; Takeda, T.; Funahashi, S.; Xie, R.-J. Chem. Mater. 2014, 26, 4280−4288.

(19) Lengeler, B.; Schroer, C. G.; Benner, B.; Gerhardus, A.; Gü nzler, T. F.; Kuhlmann, M.; Meyer, J.; Zimprich, C. J. Synchrotron Radiat. 2002, 9, 119−124.

(20) Lieb, A.; Schnick, W. J. Solid State Chem. 2005, 178, 3323−3335. (21) Lieb, A.; Weller, M. T.; Henry, P. F.; Niewa, R.; Pöttgen, R.; Hoffmann, R.-D.; Höfer, H. E.; Schnick, W. J. Solid State Chem. 2005, 178, 976−988.

(22) Barnes, A. J. D.; Prior, T. J.; Francesconi, M. G. Chem. Commun. 2007, 4638−4640.

(23) Besson, J. Comptes rendus 1890, 110, 518.

(24) Labiche, J. C.; Mathon, O.; Pascarelli, S.; Newton, M. A.; Ferre, G. G.; Curfs, C.; Vaughan, G.; Homs, A.; Carreiras, D. F. Rev. Sci. Instrum. 2007, 78, 091301.

(25) Chambers, J. L.; Smith, K. L.; Pressprich, M. R.; Jin, Z. SMART, v. 5.059, Bruker AXS: Madison, WI, 1997−98.

(26) SAINT, v. 6.36A: Bruker AXS: Madison, WI, 1997−2002.

(27) Sheldrick, G. M. SADABS, v. 2: Multi-Scan Absorption Correction; Bruker AXS: Madison, WI, 2012.

(28) Wu, G.; Rodrigues, B. L.; Coppens, P. J. Appl. Crystallogr. 2002, 35, 356−359.

(29) Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112−122.

(30) Coelho, A. TOPAS, v. 4.1: A program for crystal structure refinement; Coelho Software: 2007.

(31) Grochala, W.; Edwards, P. Chem. Rev. 2004, 104, 1283−1316. (32) Further details of the crystal structure investigation can be obtained from the Fachinformations-Zentrum Karlsruhe, 76344 Eggenstein-Leopaldshafen, Germany (fax: (+49)7247-808-666; email: crysdata@fiz-karlsruhe.de) on quoting the depository number CSD-429711.

(33) Liebau, F. [Structural Ch](mailto:crysdata@fiz-karlsruhe.de)emistry of Silicates; Springer: Berlin, 1985.

(34) The term dreier (sechser, siebener) ring was coined by Liebau and is derived from the German word "drei" ("sechs", "sieben"). A dreier (sechser, siebener) ring comprised three (six, seven) tetrahedra centers. (35) (a) Blatov, V. A.; O'Keeffe, M.; Proserpio, D. M. CrystEngComm

2010, 12, 44−48. (b) Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Cryst. Growth Des. 2014, 14, 3576−3586.

(36) Carrillo-Cabrera, W.; Caroca-Canales, N.; von Schnering, H. G. Z. Anorg. Allg. Chem. 1994, 620, 247−257.

(37) O'Keeffe, M.; Eddaoudi, M.; Li, H.; Reineke, T.; Yaghi, O. M. J. Solid State Chem. 2000, 152, 3−20.

(38) Holleman, A. F; Wiberg, E.; Wiberg, N. Lehrbuch der Anorganischen Chemie; de Gruyter: Berlin, 1995.

(39) Petter, M.; Hartenbach, I.; Nikelski, T.; Schleid, T. Z. Kristallogr. 2004, 21, 177.

(40) Schmolke, C.; Lupart, S.; Schnick, W. Solid State Sci. 2009, 11, 305−309.

(41) Machida, K. I.; Adachi, G. Y.; Shiokawa, J.; Shimada, M.; Koizumi, M. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1982, 38, 386−389.

(42) Yamane, H.; DiSalvo, F. J. J. Alloys Compd. 1996, 240, 33−36.

(43) Huppertz, H.; Schnick, W. Chem. - Eur. J. 1997, 3, 249−252. (44) Abed, M.; Müller-Buschbaum, H. K. J. Alloys Compd. 1992, 190, 61−64.

(45) Müller-Bunz, H.; Schleid, T. Z. Anorg. Allg. Chem. 2000, 626, 2549−2556.

(46) Shannon, R. D. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 751−767.

(47) Wills, A. S. VaList, v. 4.0.7; University College London, U.K., 2010.

(48) Morgan, P. E. D. J. Mater. Sci. 1986, 21, 4305−4309.

(49) Hoppe, R. Angew. Chem., Int. Ed. Engl. 1970, 9, 25−34.

(50) Hoppe, R.; Homann, R. Z. Anorg. Allg. Chem. 1970, 379, 193− 198.

(51) Hü benthal, R. MAPLE, Programm zur Berechnung des Madelunganteils der Gitterenergie, v. 4; University of Gießen: Gießen, Germany, 1993.

(52) Hö ppe, H. A. Doctoral Thesis, University of Munich (LMU), Germany, 2003.

(53) Köllisch, K. Doctoral Thesis, University of Munich (LMU), Germany, 2001.

(54) Lauterbach, R. Doctoral Thesis, University of Bayreuth, Germany, 1999.

(55) Cortona, P. Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 46, 2008−2014.

(56) Chen, J. T.; Guo, G. C.; Huang, J. S.; Zhang, Q. E. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1996, 52, 2123−2125.

(57) Zachariasen, W. H. J. Chem. Phys. 1948, 16, 254.

(58) Lange, H.; Wötting, G.; Winter, G. Angew. Chem., Int. Ed. Engl. 1991, 30, 1579−1597.